

Environment Testing America

ANALYTICAL REPORT

Eurofins Eaton South Bend 110 S Hill Street South Bend, IN 46617 Tel: (574)233-4777

Laboratory Job ID: 810-12104-1

Client Project/Site: Southwick Water Department

For:

Housatonic Basin Sampling & Testing 80 Run Way Lee, Massachusetts 01238

Attn: Nick Bruzzi

Mat 141

Authorized for release by: 1/27/2022 4:13:07 PM

Nathan Trowbridge, Manager of Project Management

(574)233-4777

nathan.trowbridge@eurofinset.com

Designee for

Patricia Muff, Project Manager (574)233-4777

patricia.muff@eurofinset.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

4

6

8

10

12

Definitions/Glossary

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Qualifiers

		N/I	C
Ц	U	IVI	J

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

 $\mathsf{DL}, \mathsf{RA}, \mathsf{RE}, \mathsf{IN}$ Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins Eaton South Bend

Page 3 of 17

Case Narrative

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Job ID: 810-12104-1

Laboratory: Eurofins Eaton South Bend

Narrative

Job Narrative 810-12104-1

Comments

No additional comments.

Receipt

The samples were received on 1/13/2022 10:15 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.2° C.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

6

7

5

6

<u>1</u>0

11

12

Detection Summary

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Client Sample ID: POE POST GT BROOK 01G

Lab Sample ID: 810-12104-1

PWSID Number: 1279000

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	1.2	J	1.9	0.38	ng/L	1	_	537.1	Total/NA
Perfluorohexanoic acid (PFHxA)	1.1	J	1.9	0.38	ng/L	1		537.1	Total/NA
Perfluorooctanoic acid (PFOA)	1.6	J	1.9	0.38	ng/L	1		537.1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.4	J	1.9	0.48	ng/L	1		537.1	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.76	J	1.9	0.38	ng/L	1		537.1	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.59	J	1.9	0.38	na/L	1		537.1	Total/NA

5

6

_

9

10

12

1 A

Client Sample Results

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Date Collected: 01/11/22 10:30

Date Received: 01/13/22 10:15

Client Sample ID: POE POST GT BROOK 01G

Lab Sample ID: 810-12104-1

Matrix: Drinking Water
PWSID Number: 1279000

Job ID: 810-12104-1

2424

6

ð

11

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	1.2	J	1.9	0.38	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluorohexanoic acid (PFHxA)	1.1	J	1.9	0.38	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.38	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluorooctanoic acid (PFOA)	1.6	J	1.9	0.38	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluorohexanesulfonic acid (PFHxS)	1.4	J	1.9	0.48	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluorobutanesulfonic acid (PFBS)	0.76	J	1.9	0.38			01/17/22 09:15	01/18/22 05:11	1
Perfluoroheptanoic acid (PFHpA)	0.59	J	1.9	0.38			01/17/22 09:15	01/18/22 05:11	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluorotetradecanoic acid (PFTeDA)	ND		1.9	0.57	ng/L		01/17/22 09:15	01/18/22 05:11	1
Perfluorotridecanoic acid (PFTrDA)	ND		1.9	0.48	ng/L		01/17/22 09:15	01/18/22 05:11	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		01/17/22 09:15	01/18/22 05:11	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.57	· ·		01/17/22 09:15	01/18/22 05:11	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48			01/17/22 09:15	01/18/22 05:11	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.48	ng/L		01/17/22 09:15	01/18/22 05:11	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.48	· ·		01/17/22 09:15	01/18/22 05:11	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.58	ng/L		01/17/22 09:15	01/18/22 05:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	92		70 - 130				01/17/22 09:15	01/18/22 05:11	1
13C2 PFDA	96		70 - 130				01/17/22 09:15	01/18/22 05:11	1
13C3 HFPO-DA	94		70 - 130				01/17/22 09:15	01/18/22 05:11	1
d5-NEtFOSAA	87		70 - 130				01/17/22 09:15	01/18/22 05:11	1
Method: PFAS6 - PFAS6									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PFAS Total	ND		2.00	0.500	ng/L			01/18/22 05:11	1

Surrogate Summary

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Method: 537.1 - Perfluorinated Alkyl Acids (LC/MS)

Matrix: Drinking Water Prep Type: Total/NA

			P	ercent Surr	ogate Reco
		PFHxA	PFDA	HFPODA	d5NEFOS
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)
810-12104-1	POE POST GT BROOK 01G	92	96	94	87
LCS 810-11048/3-A	Lab Control Sample	101	97	103	95
LLCS 810-11048/2-A	Lab Control Sample	108	103	102	95
MB 810-11048/1-A	Method Blank	107	102	107	96

Surrogate Legend

PFHxA = 13C2 PFHxA PFDA = 13C2 PFDA HFPODA = 13C3 HFPO-DA d5NEFOS = d5-NEtFOSAA

Eurofins Eaton South Bend

1/27/2022

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Method: 537.1 - Perfluorinated Alkyl Acids (LC/MS)

Lab Sample ID: MB 810-11048/1-A **Client Sample ID: Method Blank Matrix: Drinking Water** Prep Type: Total/NA **Analysis Batch: 11095** Prep Batch: 11048 MD MD

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.40	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.40	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.40	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.40	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.40	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.40	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorotetradecanoic acid (PFTeDA)	ND		2.0	0.60	ng/L		01/17/22 09:15	01/18/22 03:04	1
Perfluorotridecanoic acid (PFTrDA)	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.60	ng/L		01/17/22 09:15	01/18/22 03:04	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.50	ng/L		01/17/22 09:15	01/18/22 03:04	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.61	ng/L		01/17/22 09:15	01/18/22 03:04	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed 13C2 PFHxA 107 70 - 130 01/17/22 09:15 01/18/22 03:04 13C2 PFDA 102 70 - 130 13C3 HFPO-DA 107 70 - 130 d5-NEtFOSAA 01/17/22 09:15 01/18/22 03:04 96 70 - 130

Lab Sample ID: LCS 810-11048/3-A

Client Sample ID: Lab Control Sample Matrix: Drinking Water Prep Type: Total/NA **Analysis Batch: 11095** Prep Batch: 11048

						•
Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
95.9	97.7		ng/L		102	70 - 130
95.9	105		ng/L		109	70 - 130
95.9	106		ng/L		111	70 - 130
95.9	99.2		ng/L		103	70 - 130
95.9	100		ng/L		105	70 - 130
95.9	107		ng/L		112	70 - 130
95.9	100		ng/L		105	70 - 130
95.9	101		ng/L		105	70 - 130
95.9	109		ng/L		114	70 - 130
95.9	105		ng/L		110	70 - 130
	Added 95.9 95.9 95.9 95.9 95.9 95.9 95.9 95.	Added Result 95.9 97.7 95.9 105 95.9 106 95.9 99.2 95.9 100 95.9 107 95.9 101 95.9 109	Added Result Qualifier 95.9 97.7 95.9 105 95.9 106 95.9 99.2 95.9 100 95.9 107 95.9 100 95.9 101 95.9 109	Added Result Qualifier Unit 95.9 97.7 ng/L 95.9 105 ng/L 95.9 106 ng/L 95.9 99.2 ng/L 95.9 100 ng/L 95.9 107 ng/L 95.9 100 ng/L 95.9 101 ng/L 95.9 101 ng/L 95.9 109 ng/L	Added Result Qualifier Unit D 95.9 97.7 ng/L D 95.9 105 ng/L ng/L 95.9 106 ng/L ng/L 95.9 99.2 ng/L ng/L 95.9 107 ng/L ng/L 95.9 100 ng/L ng/L 95.9 101 ng/L ng/L 95.9 109 ng/L ng/L	Added Result Qualifier Unit D %Rec 95.9 97.7 ng/L 102 95.9 105 ng/L 109 95.9 106 ng/L 111 95.9 99.2 ng/L 103 95.9 100 ng/L 105 95.9 107 ng/L 112 95.9 100 ng/L 105 95.9 101 ng/L 105 95.9 101 ng/L 105 95.9 109 ng/L 114

Page 8 of 17

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Method: 537.1 - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCS 810-11048/3-A

Matrix: Drinking Water Analysis Batch: 11095 **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA Prep Batch: 11048 %Rec.

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorotetradecanoic acid	95.9	87.8		ng/L		92	70 - 130	
(PFTeDA)								
Perfluorotridecanoic acid	95.9	102		ng/L		106	70 - 130	
(PFTrDA)								
N-methylperfluorooctanesulfona	95.9	95.5		ng/L		100	70 - 130	
midoacetic acid (NMeFOSAA)								
N-ethylperfluorooctanesulfonami	95.9	99.7		ng/L		104	70 - 130	
doacetic acid (NEtFOSAA)								
Hexafluoropropylene Oxide	95.9	102		ng/L		107	70 - 130	
Dimer Acid (HFPO-DA)								
9-Chlorohexadecafluoro-3-oxan	95.9	97.8		ng/L		102	70 - 130	
onane-1-sulfonic acid								
11-Chloroeicosafluoro-3-oxaund	95.9	94.3		ng/L		98	70 - 130	
ecane-1-sulfonic acid								
4,8-Dioxa-3H-perfluorononanoic	95.9	105		ng/L		110	70 - 130	
acid (ADONA)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	101		70 - 130
13C2 PFDA	97		70 - 130
13C3 HFPO-DA	103		70 - 130
d5-NEtFOSAA	95		70 - 130

Lab Sample ID: LLCS 810-11048/2-A

Matrix: Drinking Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 11095	Spike	1109	LLCS				Prep Batch: 11048 %Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
Perfluorooctanesulfonic acid	1.93	1.90	Quanner	ng/L	=	99	50 - 150
(PFOS)	1.33	1.90		Hg/L		99	30 - 130
Perfluoroundecanoic acid	1.93	1.95		ng/L		101	50 - 150
(PFUnA)							
Perfluorohexanoic acid (PFHxA)	1.93	2.07		ng/L		107	50 - 150
Perfluorododecanoic acid	1.93	1.98		ng/L		102	50 - 150
(PFDoA)							
Perfluorooctanoic acid (PFOA)	1.93	1.96		ng/L		102	50 - 150
Perfluorodecanoic acid (PFDA)	1.93	1.99		ng/L		103	50 - 150
Perfluorohexanesulfonic acid	1.93	2.01		ng/L		104	50 - 150
(PFHxS)							
Perfluorobutanesulfonic acid	1.93	1.88	J	ng/L		98	50 - 150
(PFBS)							
Perfluoroheptanoic acid (PFHpA)	1.93	2.18		ng/L		113	50 - 150
Perfluorononanoic acid (PFNA)	1.93	2.09		ng/L		108	50 - 150
Perfluorotetradecanoic acid	1.93	1.70	J	ng/L		88	50 - 150
(PFTeDA)							
Perfluorotridecanoic acid	1.93	1.87	J	ng/L		97	50 - 150
(PFTrDA)							
N-methylperfluorooctanesulfona	1.93	1.68	J	ng/L		87	50 - 150
midoacetic acid (NMeFOSAA)							
N-ethylperfluorooctanesulfonami	1.93	1.95		ng/L		101	50 - 150
doacetic acid (NEtFOSAA)	4.00	0.00				407	50, 450
Hexafluoropropylene Oxide	1.93	2.06		ng/L		107	50 - 150
Dimer Acid (HFPO-DA)							

Eurofins Eaton South Bend

Page 9 of 17

QC Sample Results

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

13C3 HFPO-DA

d5-NEtFOSAA

Job ID: 810-12104-1

Method: 537.1 - Perfluorinated Alkyl Acids (LC/MS) (Continued)

102

95

Lab Sample ID: LLCS 810 Matrix: Drinking Water Analysis Batch: 11095	-11048/2-A					Clie	ent Sa	mple ID	e Lab Contro Prep Type Prep Bat	•
-			Spike	LLCS	LLCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid			1.93	1.70	J	ng/L		88	50 - 150	
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid			1.93	1.77	J	ng/L		92	50 - 150	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)			1.93	2.07		ng/L		108	50 - 150	
	LLCS	LLCS								
Surrogate	%Recovery	Qualifier	Limits							
13C2 PFHxA	108		70 - 130							
13C2 PFDA	103		70 - 130							

70 - 130

70 - 130

QC Association Summary

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

LCMS

Prep Batch: 11048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	1
810-12104-1	POE POST GT BROOK 01G	Total/NA	Drinking Water	537.1 DW	_
MB 810-11048/1-A	Method Blank	Total/NA	Drinking Water	537.1 DW	
LCS 810-11048/3-A	Lab Control Sample	Total/NA	Drinking Water	537.1 DW	
LLCS 810-11048/2-A	Lab Control Sample	Total/NA	Drinking Water	537.1 DW	

Analysis Batch: 11095

Lab Sample ID 810-12104-1	Client Sample ID POE POST GT BROOK 01G	Prep Type Total/NA	Matrix Drinking Water	Method 537.1	Prep Batch 11048
MB 810-11048/1-A	Method Blank	Total/NA	Drinking Water	537.1	11048
LCS 810-11048/3-A	Lab Control Sample	Total/NA	Drinking Water	537.1	11048
LLCS 810-11048/2-A	Lab Control Sample	Total/NA	Drinking Water	537.1	11048

Analysis Batch: 11343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
810-12104-1	POE POST GT BROOK 01G	Total/NA	Drinking Water	PFAS6	

Lab Chronicle

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Client Sample ID: POE POST GT BROOK 01G

Lab Sample ID: 810-12104-1 Date Collected: 01/11/22 10:30 **Matrix: Drinking Water**

Date Received: 01/13/22 10:15

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method F		Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	537.1 DW			11048	01/17/22 09:15	MP	EA SB	
Total/NA	Analysis	537.1		1	11095	01/18/22 05:11	MH	EA SB	
Total/NA	Analysis	PFAS6		1	11343	01/18/22 05:11	MH	EA SB	

Laboratory References:

EA SB = Eurofins Eaton South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

Accreditation/Certification Summary

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Laboratory: Eurofins Eaton South Bend

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Massachusetts	Sta	ate	M-IN035	06-30-22
The following analyte				
the agency does not	•	•	, , ,	,
0 ,	•	Matrix	Analyte	,

Page 13 of 17

Method Summary

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Method	Method Description	Protocol	Laboratory
537.1	Perfluorinated Alkyl Acids (LC/MS)	EPA	EA SB
PFAS6	PFAS6	EPA	EA SB
537.1 DW	Extraction of Perfluorinated Alkyl Acids	EPA	EA SB

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EA SB = Eurofins Eaton South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

2

4

5

6

9

10

11

13

14

Sample Summary

Client: Housatonic Basin Sampling & Testing Project/Site: Southwick Water Department

Job ID: 810-12104-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	PWSID Number
810-12104-1	POE POST GT BROOK 01G	Drinking Water	01/11/22 10:30	01/13/22 10:15	1279000

3

-4

6

R

9

11

4 4

SAMPLE CO

SOUTHWICK WATER DEPARTMENT

PWS NAME:

PWS ID:

1279000

Housatonic Basin

ROFINS EATON ANALYTICAL

80 RUN WAY LEE, MA 01238 (413)248-4622

1279000-220111

F	WS TOV		Southwick					Ho	us	ato	nic	Ba	ışiı	$n \geq$	oct	ing	НВ	SST P.O.	#		9000-2	22011	
F	WS CLA	.SS:	СОМ						00	1111	hiii	ııy	X		<u> </u>	iriy				# of	f WO:		###
			SAMPLE	INFORMATION			FI	ELD RE	CORD	ED		MICRO IOLOGY	- 1			CH	CHEMICAL ANALYSIS						
	SAMPLE TYPE	BACTERIA DEP ID	Chem Sample ID	LOCATION DESCRIPTION	DATE/TIME	SAMPLER	Field Temp C*	Field	Field Turbitity (NTU)	Chi2 Res (Free)	BACTERIA HPC	BACTERIA 9223 P/A	BACTERIA 9223 QT	PFAS 537.1	PFAS Blank								Preserved Na25203
D			[10000]	POE POST GT BROOK 01G	1/11/22 10:30 AM	Nick Bruzzi								X	X								
	_																						
																				te	MF	14	2
				CUSTODY TRANSFER			1	DATE	/TIME							N	NOTES						
	SAMPLE RECEIVE						10	1/22			0	nly rur	n field	blan	k if PFA	S is dete	ected i	n Sam	nple				
	ELINQUIS																						
	RECEIVE	***************************************	Ril	y aut			1-1-	32	z 11	015													
R	ELINQUIS	SHED																					

Note: Submit via EDEP unless designated Private or otherwise noted. Email report to: Admin@HousatonicBasin.com. Lab testing shall be in compliance with all State and Federal Drinking Water and applicable regulations.

Login Sample Receipt Checklist

Client: Housatonic Basin Sampling & Testing

Job Number: 810-12104-1

Login Number: 12104 List Source: Eurofins Eaton South Bend

List Number: 1 Creator: Trott, Riley

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

А

6

11

13

14